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.
Mixed-Integer PDE-Constrained Optimization

A new modeling paradigm

@ Paradigm shift from forward simulations to
design of complex structures

@ Design of systems involving
. complex PDE simulations,
. uncertainty quantification,
. and discrete/continuous design parameters

Integrate maths, algorithms, and CS
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Shape optimization of cavity for ILC
[Akcelik et al., 2005]




Applications of MIPDECO

A rich set of DOE application areas
© Subsurface Design Applications
E.g. remediation of contaminated sites, oil and gas extraction
o PDE constraints model subsurface flow
o Discrete design parameters model location/operation of wells

o Uncertainties model the unknown subsurface

@ Operational planning for nuclear reactors: core-reloading

o Neutron transport & fluid-flow equations j
e Discrete variables model fuel rod arrangement
o Imperfect knowledge of fuel = uncertainties

© Accelerator design: Maxwell's equation plus discrete
components, e.g. # arc & wiggler cells

@ Design of nano-materials for ultra-efficient solar cells ... next
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MIPDECO for Design of Solar Cells
Goal: Design nonreciprocal coating: full transmission & absorption
@ Design meta-material (MM) coating for solar cells
@ MM atom of given shape is assembled into molecule

e Typical crystal (layer of molecules) has 10-20 molecules width

J

MM JUNCTION
MM JUNCTION

MM atom MM molecule MM tessellation

Multi-jct SC

@ Maxwell's equation models electromagnetic response
@ 0 — 1 variables model orientation of atom on faces of molecule

Y 4/12



MIPDECO for Design of Solar Cells

General form of Maxwell's equation

VxH=2P+J, VxE=-28 1+,
V-D=p, V-B=0,

ol =[] L] o

where € = ¢(x) permittivity; ;1 permeability

Binary variables zj € {0,1} model orientation of MM atoms
= construct permittivity and permeability tensors ¢(x), 11(x)

€(x) €k = Zz,-d-’ke,- and Zzid,k =1

i€cO i€cO

where ¢; is fixed permittivity of orientation i
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Mathematical and Computational Challenges

Applications give rise to MIPDECO under Uncertainty

minimize F(y(7),u, z)
y(’Y)’u7Z

subject to g(y(v),u,z;v) =0, Vy e
y() eV, ueld, ze€ZP NS,
where
@ y(7) state variables depending on random variables v € I’
@ u continuous design variables
@ z integer design variables
@ g describes PDE and boundary conditions

e F(y(v),u,z) is objective, e.g. maximize power of solar cells
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Challenge I: Combinatorial Explosion

MIPDECOs generate huge search trees [gelotti et al., 2013]
@ Each node in tree is PDE-constrained optimization
@ Must take uncertainty into account

o {4 angles} x {6 faces} x {10k cubes} = 24k binary variables
Brute-Force Approach: assume billion PDECOs per second
= exascale machine would run longer than age of universe!
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Must exploit hot-starts for re-solve ... solve millions of (N)LPs



Challenge II: New Algorithms & Math
A Simple Approach

PICO [Eckstein et al., 2001] + PETSC - fa.l e
MINOTAUR (Mahajan et at, 2011] Trilinos r

Need integrated algorithmic strategy, e.g.
@ Tree-search techniques based on surrogate models
o Integrate multilevel combinatorial with multilevel PDE
@ Optimization framework guides exploration of uncertainty
e Align algorithmic hierarchies with machine/storage hierarchies

Worst case multiple load desian

. concerted effort worthy of DOE labs N
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New math challenges A I
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@ Quality or bounds on surrogate models — N
. . NP AP S
e What is {0,1}>°? E.g. function space /\/ 7 X

for topology optimization SN =
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Integrated Uncertainty Quantification

Sources of Uncertainty
e Errors in material properties (e, i)
@ Manufacturing inaccuracies
e Numerical/modeling errors

@ Errors from data measurements

Combine PDECO with stochastic programming for UQ
@ Design under UQ as two-stage stochastic MIP optimization
o First-stage variables are design variables
@ Second-stage variables are solutions of stochastic PDE

= Block-angular structure, where each block is PDE

Goal: control uncertainty; dimension reduction; adjoint technology



Toward Billion-Way Concurrency

Back-of-Envelope Computation
>y, @ Asynchronous tree-search
@ Linear solvers inside PDEs

,,,,,, e UQ block-structure

Worker 1~ Worker2 ~ Worker 3

Opportunities for Exascale

/ b 1:,00@ parallel tree—searches
' x 10,000 cores per PDE solve
| x 100 cores for UQ

” billion-way parallelism

i

@ Tree-search loosely coupled solves with small communication

o Readily scales to 1,000 parallel tree-searches [Goux and Leyffer, 2003]
e Communicate bounds, new solutions, and sub-trees

@ Parallel solvers for PDE-constrained optimization
o Scalable linear algebra ... up to 150k cores (NEK5000)

@ Scenario-based decomposition or UQ

o Scales with number of scenarios (samples)

e Some communication between scenarios

Hierarchy of concurrency = multiplicative opportunities
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Algorithm-Level Resiliency

Exascale systems likely to have shorter mean-time-to-failure
. check-point-restart no longer an option

Optimization Algorithms can be made resilient
@ MIP tree-search: only check-point master node
@ Trust-region or line-search provide algorithmic resilience
@ Exploit multi-level hierarchy for smart check-pointing
@ Stochastic programming (UQ) robust to node failures
@ Resilient linear solves [Bridges et al., 2012]

. exploit resilient algorithm design at all levels of hierarchy
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Summary and Discussion

Mixed-Integer PDE-Constrained Optimization
@ Design of complex systems with discrete parameters
under uncertainty
@ Opportunity to tackle new, broader class of design applications
@ Poses rich set of mathematical, algorithmic, and CS challenges

@ Math and DOE applications “made for exascale”

e Unlikely to tackle problems on smaller systems
e Hierarchy of concurrency maps well to exascale systems
o Integrates & combines existing DOE tools

requires concerted & coordinated effort
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